
October 1982 Report No. STAN-CS-82-940

llllllllllllllllllll
PB96-150842

ü^otrA*
ä-o*5

The Equivalence of Universal Relation Definitions

by

Jeffrey D. Ullman, Moshe Y. Vardi and David Maier

T ^ <•"*•*,
.^-^

H^-* HOKn>^ ^^i--""" ■"
<■••■>■ -j.-.

,.ä n-ly^rSl -.-.:•
■ ■•■*'J, ,_r ^. ,,..^, 0,»

;"J\S

Department of Computer Science

Stanford University
Stanford, CA 94305

19970423 212 ,.;i:):oxa,
(;a ,l.ifOT

(•.■■■< -"i\

THE EQUIVALENCE OF UNIVERSAL RELATION DEFINITIONS

David Maierf
Oregon Graduate Center

Jeffrey D. Ullmanf
Moshe Y. Vardift

Stanford Univ.

ABSTRACT

The universal relation model aims at achieving complete access path independence by relieving the
user of the need for logical navigation among relations. It assumes that for every set of attributes
there is a basic relationship that the user has in mind. Two fundamentally different approaches to
the universal relation model have been taken. The first approach sees the universal relation as a
user view, about which he poses queries. Specifically, a representative instance is constructed, and
queries are answered based on its non-null part. The second approach sees the model as having
query-processing capabilities that relieve the user of the need to specify the logical access path. The
relationship between the user's view and the computation answering a query is a central issue that
systems supporting a universal view of data must handle.

We introduce "lossless" and "monotone" expressions and show that the representative instance
construction has these properties. Also, every lossless monotone expression produces a result that is
a subset of what the representative instance produces. We show that the existence of any first-order
formula to simulate the representative instance is equivalent to a "boundedness" condition on the
dependencies defining the database scheme. In addition, whenever there is a first-order formula to
simulate the representative instance, then we can do so with an expression of simple form: the union
of tableau mappings. We close with a discussion of some of the problems with the representative
instance approach that suggest better universal relation models may be possible.

I. Underlying Assumptions

We assume the reader is familiar with relational database terminology to the extent covered in <Mal, Ul>

and with the idea of implementing a universal relation view of data as discussed in those works and <KS,

MW, M*, U2>.

Goals of Universal Relation Database Systems

A primary justification used by Codd for the introduction of the relational model was his view that earlier

models were not adequate to the task of boosting the productivity of programmers <C1, C2>. One of his

stated motivations was to free the application programmer and the end user from the need to specify access

paths (the so-called "navigation problem"). A second motivation was to eliminate the need for program

modification to accommodate changes in the database structure, i.e., to eliminate access path dependence

of programs.

t Supported by NSF grant IST-81-04834 and AFOSR grant 80-0212 in accordance with NSF agreement IST-80-21358. Some.
of this material was developed while the first author was at SUNY, Stony Brook.
t Supported by AFOSR grant 80. -0212 in accordance with NSF agreement IST-80-21358.
ft Supported by a Wcizmann fellowship; a Fulbright award, and NSF grant DCS-80-12907.

1

Though hchig a significant step forward, the relational model by itself fails to achieve complete freedom

from user-supplied navigation and from access path dependence. That is, the relational model was successful

in removing the need for physical navigation; no access paths need to be specified within the storage structure

of a relation. However, the relational model has not yet provided independence from logical navigation, since

access paths among the relations must still be specified.

For example, consider a database that has relations SZ^Employee, Department) and UM(Department,

Manager). If we are interested in.the relationship between employees and managers through departments,

then we have to specify the natural join of the ED and DM relations, projected onto EM. This expression

is an access path specification, and if the database were reorganized to have a single relation EDM, then

the program would have to be modified accordingly.

The universal relation model aims at achieving complete access path independence by letting us a"k

the system in an appropriate language "give me the relationship between employees and their managers,"

expecting the system to figure oiit the correct access path for itself.f Of course, we cannot expect the system

always to select the correct relationship between employees and managers automatically, because the user

might have something other than the simplest connection, through departments, in mind, e.g., the manager

of the manager of the employee, or the manager(s) of all departments that come alphabetically later than the

department of the employee. We shall, in a universal relation system, have to settle for eliminating the need

for logical navigation along the most direct paths, while allowing the user to navigate in more convoluted

ways explicitly.

Unlike the relational model, the universal relation model was not introduced as a clearly defined model,

but rather evolved during the 1970's through the independent work of several researchers. Moreover, these

researchers were not only concerned with the universal relation as a data model, but some, like and

<BBG>, saw the concept primarily as a vehicle to discuss interrelational data dependencies. The issues

of dependency satisfaction are rather different from those of supporting a user view, and the multiplicity of

assumptions led to considerable confusion and to some attacks on the universal relation model (<K, AP>)

that we regard as not germane to the subject.

Synopsis of Paper

We shall try in this paper to unify and clarify the various "universal relation assumptions," as they pertain

to data modeling and the support of a user view. We first indicate the assumptions that are so fundamental

to the universal relation model that they are common to all the different approaches to the model. Then,

t A similar approach was taken in the RENDEZVOUS system, which generates possible access paths and lets the user choose
the desired one <C*>.

we consider what wc regard as the two basic approaches to the model. The first approach sees the universal

relation as a user view, about which he poses queries. Thus, in order to answer those queries we must first

define the semantics of this user view. The second approach sees the model as having a query processing

ability that enables the user to pose queries about the actual database relations (rather than some abstract

universal relation), without specifying an access path. Thus, in order to answer queries, we must first define

a computational procedure that produces the desired answer; that procedure includes inferring the access

path.

The main technical contribution of this paper is an exploration of the relationship between these two

basic approaches. We establish broad conditions under which the approaches are the same, i.e., the result

of the query on the abstract universal relation is equivalent to a computation in relational algebra.

The Universal Connection Assumption

Perhaps the most basic assumption is that there is a universal relation scheme, a set of attributes about

which queries may be posed. Further, attributes in this set are assumed to play only one "role," and puns

are not allowed. Thus, an attribute like NAME cannot stand for names of employees, customers, suppliers,

and managers in the same universal relation scheme.

A seldom acknowledged assumption, but one that underlies all known universal relation systems, is that

query processing consists of two steps.

1. Binding. From the set of attributes X mentioned in the query, form a relation [X], called the connection

of X, over set of attributes X. Technically, [X] is a function from database states d to relations [X](d).

We shall use [X] to stand for the relation [X](d] when the database state d is understood or irrelevant.

We allow the possibility that [X] is the empty function, i.e., no connection over set of attributes X is

permitted.

2. Evaluation. Whatever operations must be applied to answer the query are then applied to [X].

The binding and evaluation phases are independent. Different functions [X] can be used to produce different

relations over X, without changing the way evaluation works on the resulting relation, although the answer

may, of course, be changed.

For example, the queries

retrieve (EMP)

where MGR= "Jones"

and

retrieve (MGR)

where EMP= "Smith"

are each answered by forming from the database some relation r over (EMP, MGR) in the binding phase.

For the evaluation phase, in the first case, we select from r those tuples with MGR= "Jones" and project

onto EMP. In the second case, we select for EMP="Smith" and project onto MGR.

Underlying the assumptions that queries may be answered in this two step way is the assumption that

for all sets of attributes X (or at least for many of them) there is a unique relationship on this set X

that the user has in mind. That does not mean there can be only one relationship on X, but rather, one

relationship is the most basic one, so we can assume that this relationship is what the user has in mind unless

he explicitly specifies otherwise. In the above example of employees, departments and managers, the most

basic relationship between managers and employees is that of "manages," while the relationship "manages

the manager of" we intuitively feel is less basic. This underlying assumption is called the relationship

uniqueness assumption. The origin of the concept is in the "window" concept of <Ma2>.

In practice, systems such as <U2, KS, MW, M*> that support a universal relation view of data permit

queries with several tuple variables, each of which may range over a separate "copy" of the universal relation.

In that case, there is one set of attributes associated with each tuple variable, and for each such set, X, we

allow the corresponding tuple variable to range over [X],

The One Flavor Assumption

There is another rather fundamental assumption that underlies much of the work on universal relation

systems. Unlortunately, this assumption seems impossible to derive from more basic principles. It has

roughly the intellectual status of a belief like "entity-relationship diagrams are adequate to model the real

world." That is, there is substantial empirical evidence for the assumption, but we know of no deep reason

why it must be valid.

Our assumption, called the one Savor assumption, is that all tuples in [X] represent the same "flavor"

of relationship among the attributes in X. That is, the meaning to the user of the fact that tuple t is in [X]

does not depend on the details of the construction that put it in [X]. Another way to state this assumption

is that we must, when selecting the attributes in the universal relation scheme and picking an algorithm to

compute [X], arrange that the same attribute docs not play two different "roles" in one relation [X].

Evidently, "flavor" and "role" are defined only intuitively. We regard it as a fundamental hypothesis of

universal relation systems that it is alwaysf possible to rename attributes so that the single-flavoredness of

f or at least sufficiently often that it is Worth trying to implement a universal relation support system.

4

any relationship will be apparent to the user. Perhaps an example will make these ideas clearer.

Example 1: Suppose we have a universal relation scheme ABC with relations AB, BC, and AC. According

to the functional dependencies assumed, different systems such as <U2, KS> would make different responses

to a query with X = AB. The two responses we are most likely to get from a universal relation system are

t) Apply the query to the AB relation; that is, [AB] is simply the relation AB.

ii) Take the union of the connection in AB and the connection through C, that is,

[AB] = AB U TTAB{ÄC x BC)

It appears that neither is right all the time, and the question of which is right hinges on whether tuples

in AB are of the same "flavor" as tuples in KAB(AC X BC). We shall consider two interpretations for ABC,

and try thereby to illustrate the distinction.

Suppose that A = COURSE, B = STUDENT, and C = ENROLLMENT. That is, we may imagine that

a relation (COURSE, STUDENT), representing graduate courses, was at some time merged with a network

database representing the many-many relationship between undergraduate courses and students by means

of dummy ENROLLMENT records, each of which is owned by a STUDENT record and a COURSE record.

Then we intuitively feel that the student-course pairs' obtained from the (STUDENT, COURSE) relation

are of the same flavor as pairs that are related via the (STUDENT, ENROLLMENT) and (ENROLLMENT,

COURSE) relations. That is, whichever the source, the student is taking the course. Thus, in this case we

would prefer interpretation (ii) in response to a query like

retrieve (COURSE)

where STUDENT = "Jones"

The response according to choice (ii) would be all courses taken by Jones, not just the graduate courses.

Now consider an interpretation of ABC where A = STUDENT, B = LEVEL, and C = COURSE. The

(STUDENT, LEVEL) relation gives the level (Freshman, etc.) of each student, the (STUDENT, COURSE)

relation tells what courses the student is taking, and the (COURSE, LEVEL) relation gives the nominal level

of each course.

Here, we believe that the proper response to the query

retrieve (LEVEL)

where STUDENT = "Jones"

is given by (i), that is, just tell what level Jones is on, not the set of levels of Jones and all his courses.

Note that the two queries above arc both of the same form: retrieve (B) where A = constant. We feel

the difference in proper interpretation is due to the fact that (student, level) pairs meaning the student is

5

at that level are not of the same flavor as pairs meaning the student is taking a course at that level. In

more conventional terms, the attribute LEVEL is "semantically overloaded," and should be split into two

attributes, say STUDENT_LEVEL and COURSE_LEVEL. D

The one flavor assumption is a generalization of an assumption made by to the effect that attribute

names were split adequately so that there would not be two different functional relationships between sets

of attributes. That is, if a functional dependency X-+Y holds in a database scheme, and different ways of

deriving this dependency yield different values J/J and 2/2 for the attributes of Y associated with value x for

the attributes of X, then surely the tuples xyi and xy% over the set of attributes XY cannot be regarded as

of the same flavor in any reasonable sense. However, there could be one-flavor violations that do not involve

FD's. For example, the (COURSE, LEVEL) relation in Example 1 could allow courses to be at several levels,

such as Senior/Grad. The FD COURSE->LEVEL disappears, but the one-flavor violation remains.

II. Universal Relations as the User View

The other notions that have at times been referred to as "the universal relation assumption" fall into two

categories. First come assumptions that imply data is treated as if it were all in a single relation over all

the attributes. Presumably, [X] will be the projection of this relation onto X. The second group consists of

various assumptions about how [X] is to be calculated, without explicit reference to a universal relation. The

relationship between the two forms of definition is important because the first group, defining a user view, is

intellectually justifiable, while the second group provides the efficient computation needed to respond to the

user in the way he expects based on his view. In general, computing the view explicitly is far too expensive,

and we must resort to computing [X] only in response to a query about X.

We shall deal with the first group in this section. Historically, the first "assumption" in this class was

the pure universal relation assumption. By this approach, we restrict ourselves to cases where there exists

a relation u over the universal set of attributes U, such that, for every relation scheme R in the database

scheme, the current relation for R is TTR[U). In this case we take u as the user view, and [X] is simply TTR(U).

This approach has the advantage that we can view the database as a physical representation of a single

universal relation, and it facilitates dealing with the semantic constraints on the database. In fact, it was

exactly for that reason that the pure universal relation was implicitly taken for the first time by Bernstein

, when he developed a design theory for relational databases with FD's.

Clearly, in order for this approach to work, we have to ensure that the universal relation is unique, and

that we have an effective way of computing it. These issues were investigated in <BR, MMSU, Ri, VI >.

However, even with these issues solved, it was widely accepted that the pure universal relation approach is

6

not widely enough applicable <BBG>. Id fact, in <IILY> it is shown that testing whether a database

satisfies the assumption or whether an update maintains the assumption is M P-comp\ete, i.e., probably

exponential in the size of the database.

A much more promising assumption, which has become known as the wealr universal relation assumption,

is that an appropriate universal relation to serve as a user view is any relation « over U such that

1. « satisfies whatever dependencies are given, and

2. 7TR(U) is a superset of the current relation for R in the database, for each relation scheme R.

Since we cannot know which of the infinity of weak universal relations truly represents the "real world"

at any given moment, one assumes that the only facts that can be deduced about the universal relation from

the given relations of the database are those that hold in all weak universal relations. That is, we take the

user's view to be a collection of sets of tuples, one for each set of attributes X. Let Sx be the set of tuples

for set of attributes X. In Sx appear exactly those tuples t such that for every weak instance u, there is a

tuple t' in u that agrees with t on X.

Weak instances were first studied by <H> as a means to define satisfaction of functional dependencies

by a collection of relations. They have since been studied by <Me> as a way to define information content

in relational database schemes and by <Sal, Sa2, Y> as a model of what the user should see as the universal

relation about which he is to pose queries.

An important property of weak instances is that as long as the dependencies are of a type for which the

chase process (<ABU, MMS>) is a partial decision procedure, even dependencies as general as embedded

implicational dependencies <F, BV, YP>, we can construct from a set of database relations a single relation

that embodies the information present in all weak instances. The desired relation, which is the relation Sx

mentioned above, is constructed as follows.

1. We construct a relation u over U. To begin, for each relation r over one of the database relation schemes,

say R, and for each tuple t in r, place in u a tuple that agrees with t on the attributes of R, and that

in the other attributes has a new "null" symbol appearing nowhere else. We use _|_,- for nulls.

2. Apply dependencies to "chase" u, that is, generate new tuples and equate symbols, as required by the

dependencies. However, when equating a null and nonnull symbol, replace the null by the nonnull. For

certain kinds of dependencies, in particular full dependencies, where no new symbols are generated by

the chase, this step terminates. However, we introduce new nulls when embedded dependencies are

applied, so the process may not terminate if there are embedded dependencies. In this case the result

of the present step should be taken as the infinite relation that results from chasing "forever."

3. If during the chase process, we are ever forced to equate two symbols, neither of which is null, then

7

the process stops. We interpret this situation as saying that the actual relations in the database do

not satisfy the given dependencies. To be exact, in this case there is no universal relation that satisfies

the dependencies and produces supersets of the database relations when projected onto the schemes of

those relations; that is, there is no weak instance.

The relation constructed as above from a list of database relations ri,..., r„, is called the representative

instance for these relations (with respect to the given dependencies), and we denote it by RI(rj,..., rn). The

weak universal relation assumption says that the representative instance is a suitable model of the data

as stored in one relation. The representative instance differs from a pure universal relation in that the

latter consists only of total tuples. In contrast, the representative instance extends tuples of one relation

to have nonnull values in whatever components are justified by the dependencies. However, in general, the

representative instance consists of relationships defined on subsets of the universal set of attributes—subsets

that are as large as make sense.

Whenever a tuple of u has nonnull symbols in the components for set of attributes X, these values are

presumed to be related in a significant way, and therefore belong in [X]. Put another way, if we let 7rj.ß(u)

stand for the projection of u onto R after throwing away all tuples that have nulls in one or more of the

components corresponding to the attributes in R, then the weak universal relation assumption says that

[X] = n\x{u), where u is the representative instance defined above. We call -K{ the restricted projection.

As this way of defining connections is only one of many possibilities, we should, strictly speaking, use

a special notation for this definition. We shall use [X]A to denote the set of tuples obtained by computing

the representative instance using set of dependencies A, and then performing the restricted projection onto

X. A fundamental property of the representative instance is that it always produces the intersection of all

the weak instances, that is, the sets Sx consisting of those tuples that are in the projection of every weak

instance onto X. While this relationship is generally believed, we provide a proof in the following theorem.

Theorem It For all X, [X]& == Sx.

Proof: Since RI(rx,... ,rn) is a weak universal relation, it is clear that Sx Q P^]A- ^ remains to prove

the other direction.

Let u be the universal relation constructed in the beginning of the construction of the representative

instance. That is, u is constructed by taking all tuples in the database and padding them with distinct nulls.

Now let v be any weak universal relation for the database. That is, v satisfies the dependencies in A, and

nii(u) is a superset of the current relation for R in the database for each relation scheme R. It is easy .to

sec that we can define a mapping h on the entries in u that is the identity on all entries that come from the

8

E C D M

Jones Ann ±i ±a
Jones Jim ±3 . ±4

Green Sue ±5 ±6

Jones ±7 Shoes ±8

Smith ±« Toys ±10

±11 ±12 . Toys Green

Fig. 1. Initial table,

database (i.e., the non-null entries), such that h[u) C v. Now we can show by induction on the chase steps,

as in <BV, SU, MMS>, that application of the dependencies preserves this statement. That is, let u' be a

universal relation in an intermediate step of the algorithm. Then we can define a mapping h on the entries

in u' that is the identity on all entries that come from the database, and such that h(u') C v.

It follows that we also have such a mapping h for which fc(RI(ri,..., rn)) C v. Now let t be a tuple in

RI{ri,..., rn) with non-null entries in the components corresponding to attributes in X. Then we have that

k[t) is in v and h(t)[X] = t[X\. It follows that t[X] is in Sx. Thus, [X]A C SX- □

Example 2: Suppose we have attributes E (employee), C (child), D (department), and M (manager), with

relation schemes EC, ED, and DM with current values

E C

Jones Ann

Jones Jim

Green Sue

E

Jones

Smith

D D

Shoes

Toys

M

Toys .1 Green

Suppose that the given dependencies are E-++C, E-+D, and D—*M .f The initial value of u constructed by

step (1) above is shown in Fig. 1.

We could apply E-*-*G to deduce that the tuple

(Jones, Ann, ±3, ±_4)

was in u. However, we would later discover that this tuple contains the same information as the first tuple

in Fig. 1, so we shall instead apply the FD's, discovering after we do that the MVD E—>-»C is satisfied as a

result (which must be the case because the two FD's logically imply the MVD here). Thus, E-+D applied

to rows 1, 2, and 4 of Fig. 1 tells us that J_j = ±3 == Shoes. Then D—*M tells us that J_io = Green,

t The First of these is redundant and is included only to illustrate a point.

9

E . G D M

Jones Ann Shoes ±2

Jones Jim Shoes ±2

Green Sue ±5 ±6

Jones ±7 Shoes ±2

Smith ±9 Toys Green

±u ±12 Toys Green

Fig. 2. The representative instance,

and ±2 = ±4 = ±85 we shall replace them all by _|_2. At this point no further changes can be made.

No nonnull symbols were equated, so the data is deemed to satisfy the given dependencies. Figure 2 shows

the resulting representative instance. It serves as an adequate universal relation, telling us all the facts that

can be deduced from the given data and the dependencies. For example, we know that Ann is the child of

someone in the Shoe.Department, because [CD] = {(Ann, Shoes), (Jim, Shoes)}. D

Representative Instances and Logical Theories

Another way to look at the weak universal relation approach is to view the database as a-logical theory.

From this point of view (<GaMi, Ko , Re>) a database is a set of sentences in a first order language without

function symbols, whose relation names denote the relations of the database and whose constants denote

the elements of the domain of the database. Let T be such a theory. Then, in answer to a query about a

relation R, we must produce the set of tuples {t \ T [= h{t)}, i.e., the set of all tuples whose membership

in the relation for R is implied by the theory. This approach has the advantage of working even in the case

that the given constraints are not dependencies, so the chase would not applicable.

Let.us now see what the theory T is in our case. Our construction is similar to the construction in

<GrMe>, though they had a somewhat different intention in mind. The language we use has a relation

name X for every attribute set X. In particular, it has a relation name R for every relation scheme R in

the database scheme, and it has the universal relation name U. For constants we use the elements of the

database, which denote themselves.

The theory has five kinds of sentences. First, we have a set DB of atomic sentences describing the

relations in the database. That is, for every tuple t in some relation r over relation scheme R, we have in DB

the sentence R(t). Secondly, we have a set INC of sentences saying that the relation r for a relation scheme

R is included in the projection of-the universal relation on R. For example, suppose that U — ABCD and

10

R = BCD. Then put in INC the sentence

(V6)(Vc)(Vd)(3a)(Ä(6, c, d) -* U{a, b, e, d))

Thirdly, we have a set CON of sentences saying that the relation x for an attribute set X contains the

projection of the universal relation on X. In the above example we have the sentence

(Va)(V6)(Vc)(Vd)(£/(o, 6, c, d) -> R(b, c, d))

In addition we have the set DIS stating that all elements are distinct, i.e, for each pair of distinct elements

a and b we have the sentence a ^ b. Finally, we have A, which is the given set of dependencies written as

first-order sentences (<BV, F>) with the universal relation name as the only relation name. The theory T

is taken to be the union

DBUINC\jCONijDIS\J&

Consider now a model of this theory. Since all constants must be interpreted as distinct elements (by

the sentences in DIS), we can assume that they are interpreted as themselves. Let r be a relation in the

database for the relation scheme R, and let r' be the interpretation of R in the model. For every tuple t in r

we have a sentence R[t) in DB, so t must belong to r'. Let « be the interpretation of the universal relation

U. By the sentences in INC, we have r' C 7Tß(u), and consequently, r C 7r^(u). Also, u satisfies A. It

follows that u is a weak universal relation for the database. Conversely, given a weak universal relation u

for the database, we can construct a model for the theory, by taking u as the interpretation of U, and by

taking irx{u) as the interpretation of X for each attribute set X. We have just proven:

Theorem 2: A database satisfies the given dependencies if and only if its theory is satisfiable. D

Now, given an attribute set X, we define \X\T to be {t \ T (= X(t)}. The next theorem shows that

[X]r is the desired relation. .

Theorem 3: [X\T = Sx-

Proof: We have seen that every model of-T corresponds to a weak universal relation for the database and

vice versa. Let t be a tuple in Sx- Then in every weak universal relation «there is a tuple t* such that

t = t'[X]. Thus, in every model of T there is such a tuple t'. By the sentences in CON, in every model of

T, t is contained in the interpretation of X. Thus, T \= X[t), and t is in [X]T- The opposite direction is

similar. D

IQ. Computational Definitions of the Universal Relation

Now we come to a variety of assumptions that start from the point of view that the user may query about

11

any set of attributes X, and the system will perform some computation on the relations of the database

to compute [X]. This approach was originally taken by , where it is implicitly assumed that [X]

is computed by joins simulating functional dependencies. It was taken again in <ABU>, where it was

assumed that [X] should be computed by a natural join. There, the notion of a "correct join" was identified

with the notion of lossless join; in fact the lossless join seems to be the basic computational procedure in all

works taking the computational approach.

The first implemented system to behave this way, the UNIX command q <Ah>, uses a list of sets of

attributes; the list is established once and for all, for each database. [X] is computed by searching the list

for the first set of attributes Y that includes X, computing a relation over Y in some specified way, and

projecting onto X. If no set on the list is found, then the join of all the relations is taken and projected.

Several papers have investigated ways to find "correct" joins, and if possible, "optimal" joins to compute

[X] for a given attribute set X. See for example <Ar, L, V2>.

Most other proposals compute [X] by taking the union of one or more terms, each of which is a lossless

join. (In practice, the sets of relations on the list in a q application are likely to be lossless as well.) For

example, <0, Sal, Sa2, KS> discuss taking the union of extension joins as a way to compute [X]. The

paper <MU> proposes taking the union of joins each of which lives inside some "maximal object," where

the join is not only lossless, but where the losslessness follows from particular rules, like the FD or MVD

rules for testing lossless joins. Variants of this approach have been implemented in System/U <U2> and

PITS <MW, M*>.

The idea of using for [X] a union of projections of lossless joins can be generalized considerably. For

example, the System/U algorithm, since it requires a lossless join of "objects," which may be proper subsets

of relations, really uses a union of projections of lossless joins of projections of relations.

Lossless Expressions

Suppose E(Ri,..., Rn) is any expression whose operands are relation schemes Rit..., Rn that are subsets

of some universal scheme U. Suppose also that the result of E is a relation over set of attributes X C U.

We say. E is lossless with respect to a set of dependencies A if for each relation u over U that satisfies A,

when we substitute for each operand R of E the relation iru{v), the value of E is a subset of itx{u)- For

the usual sorts, of expressions we deal with, such as joins and the "tableau mappings" to be defined formally

later, it is easy to show that containment always holds in the opposite direction, so "is a subset of" could be

replaced by "equals" in the definition of losslessness.

Example 3: Suppose we have a universal relation scheme EDOP, representing employees, departments,

12

offices and phones. We shall assume the FD E-*D, but no other dependencies except the join dependency

tx(ED,EO,EP,OP)

that we suppose corresponds to the formal definition of the universal relation according to the style of

<FMU>. We shall, for this example, take the relation schemes to be EDP, EO, and OP.

Suppose we take X = DO, that is, we are interested in the department-office relationship. One lossless

expression we might use is the join of all the relations projected onto DO, that is

nDO{EDP tX EO X OP)

The losslessness of this expression follows.from the given join dependency.

A simpler lossless expression is irDo{EDP XJ EO). The losslessness of this expression follows from the

FD E-*D, and it is important to note that EDP X EO is not a lossless join. That is, to test the losslessness

of nDO{EDP IX EO) we must check whether it is contained in the expression TCDO{EDOP), using the test

of <ASU>. The tableaux for the two expressions are

E D 0 P

and

EDO

do

respectively. We here and throughout the paper use blanks for symbols that appear nowhere else in.the

given tableau.

The first of these tableaux can be "chased" using the FD E-+D, yielding

E D 0 P

e d p

c d o

whereupon the containment TTDO{EDP XX EO) C nDO{EDOP) follows, since the row of the tableau for

^DO{ED0P) can map into the second row of the above tableau.

A third lossless expression we might use is ■nDo{nBD{EDP)XEO). We can show this expression to be

lossless by an argument similar to the one used above. D

13

In fact, we shall later prove a general rule for testing the losslessness of expressions, such as those in

Example 3, that are representable as tableaux. Simply chase the tableau, and see if a row with all the

distinguished symbols is created. Note how this rule generalizes the lossless join test of <ABU>, since

there we want a row with the distinguished symbol in every column. In the present case, we do not care

about symbols not in the X-columns, where X is the scheme for the result of the expression.

Monotone Expressions

There is another condition on expressions that plays a role in characterizing computational ways to define

universal relations. Say an expression 2?(i?i,..., Rn) is monotone if whenever r,- C a; for 1 < i < n,

it follows that E(ri,...,rn) Q E(si,... ,sn). For example, all expressions of relational algebra using the

operators select, project', Cartesian product, and union, i.e., all those that do not involve set difference, are

monotone.

Motivation for Losslessness and Monotonicity

There is a natural motivation for restricting our attention to lossless, monotone expressions. Let us first

consider losslessness.

Suppose that the user actually.has a universal relation u in mind. Then he would like to have [X] =

7rx(«)- However, because of the structure of the database, the user cannot store u, and he is forced instead

to store its projections 7Tß, (u),..., 7r#n(u) onto the relation schemes of the database scheme. Thus, he would

like the function / that computes [X] to be such that /(7rßl(u),..., n\R„(u)) = 7rx(w). Well, perhaps asking

for "the whole truth" is tco much, because the database scheme may not support the reconstruction of

certain connections in the universal relation. But surely the user would like "nothing but the truth"; that

is, /(TTR^U), ..., i*Rn(
u)) Q TOf (u). In other words, / should be lossless.

Indeed, the function / defined by the representative instance is lossless. To see informally why this is

so, suppose we start with a universal relation ui satisfying a set of dependencies A, and we project «x onto

some relation schemes to get relations ri,...,rjt. Whatever the chase process for the dependencies in A is,

we expect that no combination of nonnull symbols will be generated by the chase unless it is a consequence

of A. Since «i has all the combinations of symbols found among the tuples in the r,'s and satisfies A, every

combination found in the result, «2J of the chase, will be found in «i. Thus

nlx(u2) C 7Tix(«i) = Trx(wi)

which proves that the representative instance construction is lossless.

Note that we cannot in general prove that equality holds, since ui may contain tuples in its projection

14

onto X that cannot be reconstructed by the chase. However, there is a broad class of dependencies for which

we can almost prove equality. An implicational dependency is said to be typed if symbols do not appear

in more than one column. That is, the domains for the various attributes are regarded as disjoint, and

dependencies can neither be predicated on the same value appearing in more than one column, nor can they

infer the presence in one column of a symbol appearing in another.

Theorem 4: Let A be a set of typed implicational dependencies, «i a universal relation satisfying A, and

«2 the result of projecting «i onto relation schemes Ri,...,Rn and constructing the representative instance

from these projections. Then irix{u2) is cither empty or is exactly ?rx(«i). The latter occurs exactly when

the expression itx{ ^ Ri) is lossless with respect to A.

Proof: We argued above why 7r|x(«2) Q TX"(UI). Conversely, suppose 7rix(w2) is not empty. Then, A

allows us to infer, from the fact that certain tuples are in the relations over the i?,'s, that some tuple t with

non-null components for X exists in the representative instance «2-

Now consider any tuple a in ui, and consider its projection onto the relation schemes. Since the

dependencies in A are typed, all equalities that A requires to infer t are satisfied by the projections of a,

since all these projections agree in components that they have in common. Therefore, A will imply the

existence in u^ of some tuple with non-null components for X, and these components must agree with the

corresponding components of a, since A is typed. Thus, a[X] is in 7rjx(«2)- Also, taking the projections of a

tuple on ßi,... ,Rn, padding them with nulls, and chasing them with A, is exactly the test for losslessness

of the expression nx{ ^ Ri)- Since we showed that we get a tuple with non-null components for X, it
l<t'<n

follows that the expression is lossless.

Finally, if the expression is lossless, then the losslessness test will produce a tuple with non-null

components for X, and that means that, starting with a tuple a from ui, we get nx(a) in if[x{u2)- D

Corollary 1: Let A be a set of implicational dependencies, «x a universal relation satisfying A, and «2

the result of projecting u^ onto relation schemes Ri,...,Rn and constructing the representative instance

from these projections. Then irixi^) ~ Txfai) if ar,d only if the expression nx{ ^ Ri) is lossless with
l<t'<n

respect'to A. -

Proof: The proof is similar to the proof of the theorem. O •

When the dependencies are not typed, then Theorem 4 does not necessarily hold, as the next example

shows.

Example 4: Let the universal relation scheme be ADCD and the relation schemes be AB, AC, and AD.

15

Suppose we have the following implicational dependency.

A B G D

a' a d d'

That is, whatever symbols appear together in the A and D components must also appear together in the B

and G components.

Then consider the following universal relation u.

Oi b% Ci di

ai a\ di di

Let X = BC, so the projection of u onto X is {&iei,aidi}. If we project u onto AB, AC, and AD and

chase the representative instance, we can infer the existence of a tuple with middle components aid\, but

not the existence of one with middle components bic\. tU

The motivation for monotonicity comes from our hope to duplicate by an expression the connection [X]

defined by the representative instance, and from the fact that the function defined by the representative

instance is monotone.f It is straightforward to show, whenever the representative instance is defined for the

two databases (ri,...,rfc) and (ai,...,ak), i.e., both databases satisfy the given dependencies A, that the

condition r,- C a,- for all i implies [X]A(ri,..., r*) C [X]A(si,...,Sk). Thus [X] defined by the restricted

projection of the representative instance has the monotonicity property.

IV. Representative Instances, Lossless-Monotone Expressions, and Tableau Mappings

The broadest observation we can make is that the lossless, monotone expression approach to defining [X] can

only produce tuples that we get from the representative instance. In this section we also introduce tableau

expressions and explore their relationship to the representative instance.

Containment of Lossless-Monotone Expressions within Representative Instances

Theorem 5: Let E be an expression that is monotone, lossless with respect to some set of dependencies A,

and produces a relation over X. We do not constrain A, except that it must consist only of dependencies for

which the "chase" process succeeds in producing a (finite or infinite) representative instance that satisfies A,

e.g., the implicational dependencies. Then if tuple t is in E(ri,...,r„), it follows that t is in 7rix(«), where

f Another such property, which docs not play a role here, is the containment condition, which says that if X and Y are two
sets of attributes, and X C Y, then for all database stales d, Tx([^](d)) Q P0(d). That is, whatever connection among the
attributes of Y is represented by the database, the connection for X is an essential part of it.

16

u = RI(ri,...,rn). .

Proof: Let Ät- be the relation scheme for r<, and let at- = ^Ri{
v)- Then rt- C a,-, since u is RI(ri,. ..,rn).

By monotonicity, t is in J5(ai,...,an). As E is lossless with respect to A, and u satisfies A, t must be in

7Tx(«), and since t has no null symbols, it is in 7Tix(")- CD

Tableau Mappings

We wish to deal with the question of when there is an expression, particularly a first-order formula (i.e.,

an expression of relational algebra), to simulate the effect of the representative instance, f To make this

characterization we need to introduce two concepts. The first is tableau mappings, which are expressions

that can be denoted by tableaux as in <ASU>, and the second, which we call "bounded" database schemes,

involves a strong limit on the length of the chase needed to deduce that a particular tuple is in [X] during

the construction of the representative instance.

For our purposes, both tableaux and (embedded) implicational dependencies will be represented in the

same notation, (*i,..., tjt)/*, where the t,'s and t are rows of abstract symbols. The components of these rows

correspond in a fixed, understood order, to the attributes of the universal relation scheme. The positions of

t are either blank or are symbols that appear at least once among the t,'s. If a dependency is represented,

t could alternatively be an equality a = b between two symbols appearing among the i,'s. If a tableau is

represented, then the *,-'s could be tagged by relation schemes or relation names; we write £,- (Ä,-) to indicate

that row £,- is tagged by relation Ri. In that case, we expect that every position of £,■ that does not correspond

to an attribute in the relation scheme for J2, will have a unique symbol, one that appears nowhere else in

the tableau. Normally, we represent unique symbols by blanks.

As dependencies, we call the t,-'s hypothesis rows and t the conclusion row. The notation being used

here, and the meaning attributed to these dependencies is defined further in <SU, Ul>, and in <BV, F>,

although different notation is used in the latter papers. Roughly, the dependency says that whenever we

see tuples that look like the hypothesis rows, in the sense that there is a mapping of symbols that makes

all the hypothesis rows become tuples of the relation, then there is also some tuple in the relation that is

the conclusion row after mapping of the symbols, with blank positions mapped to arbitrary symbols; if the

conclusion is a = b, then instead we require that this arbitrary symbol mapping has in fact mapped a and

6 to the same symbol, because the relation allowed no other possibility.

As an expression, the t<'s are called rows, and t is called the summary. The meaning of such a mapping

f Note that there is always a second-order formula to simulate the representative instance, since we may thus express the
condition that a relation with the properties of the representative instance exists.

17

ED O

. e d P [EDP)

e . 0 (EO)

o V (OP)

Fig. 3. A tableau expression or implicational dependency,

is described in <ASU>.- Informally, it means that the result of the mapping applied to a universal relation

u is found by taking each possible mapping of symbols that makes each row a tuple in u and placing in

the result the tuple that is formed by applying this symbol mapping to the summary. We can also apply a

tableau mapping not to the universal relation but to a collection of relations r\,..., rn over relation schemes

Ri,...,Rn that are each subsets of the universal relation scheme. In this case we require that for each row

tj, tagged by some relation R, we have R = R{ for some i, 1 < t < n, and that the symbol mapping sends

tj, restricted to Ri, to some tuple of r,-. •

Lemma 1: Let E = (ti,..., tn)/t be a tableau expression, and A a set of implicational dependencies. Then

E is lossless with respect to A if and only if A J= £", when E is treated as an implicational dependency.

Proof: E is lossless if and only if it is contained in the expression that is the projection onto those attributes

in which t has a nonblank, that is, in the result of the tableau mapping t'/t, where t' is t with blanks replaced

by new symbols. By the test of <ASU>, this containment holds only if, after chasing {ti,... ,tn } by the

dependencies in A, t' can map to one of the resulting rows. But that is exactly the condition under which

A\=E.a

Example 5: In Fig. 3 we see an expression or dependency based on the database of Example 3. We follow

the convention of using blanks not only in the summary/conclusion, but everywhere that a symbol appearing

only once is found. As a tagged tableau mapping, it produces the natural join of the three relations EDP,

EO, and OP, projected onto DO. As a dependency, it says that d and o appear together in a tuple of each

universal relation in which for some e and p, there is a tuple in which e, d, and p appear together, another

tuple in which e and o appear, and a third in which o and p appear, all in their appropriate columns. As a

consequence of this dependency, the above expression T;DO$^ {EDP, EO, OP)) is lossless. D

Bounded Database Schemes

A database scheme is a finite set of relation schemes and a finite set of dependencies that apply to the

18

universal relation scheme that is the union of the given relation schemes. We denote the database scheme

by D — (A, {Ri,...,/?„}), where A is the dependencies and Ri,...,Rn the relation schemes. We say that

two database schemes are equivalent if

1. their relation schemes are the same, and

2. their dependencies are logically equivalent, i.e., the same universal relations satisfy both sets of depen-

dencies.

Let D = (A, {J?i,. ..,Rn}) be a database scheme. We say P is k-bounded (for set of attributes X)

if for any relations ri,...,rn over the Ä,'s, if u = RI(ri,.'..,r„), and t is in 7rix(«), then we can deduce

that fact by a sequence of at most k applications of dependencies in A, starting with the r,-'s (padded with

blanks as in Fig. 1). D is bounded if it is fc-bounded for some k. Note that "bounded" says more than that

the chase terminates in a finite relation for any r,-'s. It says that sequences of fc dependency applications

suffice independently of the initial r<'s. As we shall see, "bounded," "fc-bounded," and "1-bounded" all are

equivalent statements, in the sense that any bounded database scheme is equivalent to a 1-bounded scheme.

V. Lossless Tableau Mappings and Representative Instances

We shall now develop our characterization of when the representative instance can be simulated by a first-

order formula. In particular, we show the equivalence of the following three statements about a database

scheme D, whose dependencies are implicational, and a set of attributes X.

1. D is bounded for X (and in fact 1-bounded).

2. There is a ßrst-order formula that computes 7rj.x(RI(ri, • • • > rn)), i.e., there is an expression of relational

algebra ihat simulates the representative instance.

3. wljf(RI(ri» • • • >r«)) i3 computed by a finite union of tableau mappings.

Theorem 6: Let D = (A,{R\,...,Rn}) be a database scheme, where A is a set of implicational depen-

dencies. Then there is, for each set of attributes X, a finite set of lossless tableau expressions whose union

yields the same relation as itlx{u), where u is RI(ri,..., rn) if and only if D is equivalent to some bounded

scheme.

Proof:

If: We may as well assume that D itself is bounded. Let k be the bound on the number of dependencies

that need to be applied, and let m be the maximum number of hypothesis rows in any member of A. Then

consider every tagged tableau expression E whose summary has nonblanks exactly in the positions for the

attributes in X, and that has at most km rows. Depending on the equalities of various symbols among the

19

A B . G

Ol bi ±i

ai ±2 . cx

0,2 J_3 Cl

a2 ±4 C2

<*3. ' ±5 C2

_i_2n

A ß G

<*i 6i ±i

«l by. Cl

«2 h Cl

Ö2 h c2

A3 h C2

(a) (b)

Fig. 4. Chase of unbounded length,

rows of the tableau, E may or may not be guaranteed to produce tuples over X that will be produced when

the representative instance is chased by A. If A |= E, then we have such a guarantee; if not then we don't.

Moreover, since D is bounded, all tuples found to be in the representative instance projected onto X

will be generated by some such expression that is logically implied by A when the expression is treated as a

dependency. Also, there is evidently only a finite number of such dependencies. We therefore can compute

^ix{,u) by taking the union of all those expressions whose; tableaux' summaries have distinguished symbols

in exactly the columns of X, and that are logically implied by A, when treated as dependencies.

Only if: Suppose that there is a lossless expression Ex that is the finite union of tableau expressions and

produces the same result as nix{u)- Convert the set of Ex's to a set of dependencies, say A'. Since the

Ex's are lossless, A |= A'. It follows that A is equivalent to A U A'.

Clearly, one step of dependency application using A' serves to obtain enough tuples in « to prove that

fix^u) will contain whatever Ex produces, as D is 1-bounded. O

Example 6: Consider the database scheme D = ({A—>B,C—>ß}, {AB,AC}). We claim that D is not

bounded, and therefore the universal relation defined by its representative instance cannot be simulated by

any finite union of lossless tableau expressions. To see informally why D is not bounded, consider the relations

{aii&i} f°r AB and {aiCi,a2Ci,a2C2,azc2> ■ ■•>aici-i>aici> •■ ->ancn } f°r AC. The initial representative

instance is shown in Fig. 4(a), and the chased version in Fig. 4(b). Note that deleting any tuple from AG

means that anbicn will no longer appear in the chase.

20

Suppose now that D is bounded. Whatever set of dependencies equivalent to { A—*B, C—*B } we choose,

the existence of a tuple an6icn will have to be inferred from only a finite number of the tuples in AC.

However, by making n large enough, we can force the inference to be made without looking at some aiCi.

Then, by deleting this tuple from AC, we can force a situation where the dependencies {A—*B,C-*B}

no longer imply the presence of tuple an6xcn, yet the chase using the equivalent set of dependencies still

produces that tuple. CD

Now let us turn our attention to the second equivalence, that between arbitrary first-order formulas and

finite unions of lossless tableau mappings. .

Theorem 7: Let D = (A, {Ri,...,Rn}) be a database scheme, where A is a set of implicational depen-

dencies, and let X be a set of attributes. Then irix(Rl{ri> ■•■>»n)) ^ expressed by a first-order formula if

and only if it is expressed by some finite union of lossless tableau mappings.

Proof: The "if" portion is trivial. For the "only if" part, we observe that every time we add a tuple in the

chase, we can find a tableau mapping that yields the projection of this tuple onto X. We find this tableau by

first expressing as an implicational dependency the fact that this tuple is inferred from a finite set of tuples

of the original relations. The hypotheses of this dependency will each have a particular relation scheme in

vhose columns all the nonunique symbols appear; thus it can be viewed as a tagged tableau mapping. By

Lemma 1, the losslessness of this mapping follows from A. It follows that there is some (p'ossibly infinite)

set of lossless tableau mappings whose union yields 7r Jx(RI(ri> • • • i rn))-

Let these mappings be Ti,72,..., and let Qi,Qz, be the relations over X produced by these

mappings.f We know that Qi U Q2 U ••• is equal to Tix(RI(''i,.. .,rn)). There is an unexpected difficulty

here because we cannot refer to this infinite union by a first-order sentence. However, we can say that the

relation R is a superset of this union by using an infinite set of sentences. In what follows, we use i?,- as

a relation symbol that stands for the ith relation in the database scheme, and we use R as an arbitrary

relation over X. • . •

By <GV>, we can find a (possibly infinite) set of implicational dependencies A' over Ri,...,Rn

asserting that these relations are consistent, in the sense that when we chase these relations, we do hot

attempt to equate two different nonnull symbols, and therefore, the representative instance exists. Further,

we can construct for each T,- a first-order formula il>i(t,Ri,...,Rn) that asserts that tuple t is in Qi. Let

(j>[t,Ri,...,Rn) be the hypothetical first-order formula that says of tuple t that t is in ^lx{u), where u is the

representative instance constructed from the relations for which the Ri's stand. Then we have the following

t The reader should be aware that in this proof, we represent relations by predicate symbols, Q'a and Ii's. Thus, Q really
stands for the predicate Q(t) that is true if and only ir tuple t is in the relation we call Q. We shall continue to treat such
predicate symbols as if they were relations, e.g., by applying algebraic operators to them.

21

logical implication.

A' u {cv*xifc-»Ä(t)) i ■»'=i, 2,... > h m(<t>->m)

The reason that this implication holds is as-follows. In a model of the left-hand side, the relations ri,..., rn

for Ri,...,Rn constitute a database that has a weak universal relation, and the relation for R contains all

the Qi's. Thus it contains 7rjjf(RI(ri,.. .,rn)), and therefore it contains the relations produced by ^. Thus

the model satisfies Vt(<f> —► R(t)).

By compactness, there is a finite subset of the ipi's,] which we may take to be ^li • • •. i'k, such that

A' U {(Vi)(Vi-tf(*))..... (W)(lfc->*(t))} h (Vt)(*-A(0)

Now let R be Qi U • • • U Qk, that is, the union of the results of applying the fc tableau mappings to the

given relations. Thus R(t) is logically equivalent to Qi(t) V ••• V Qk[t)- Then rpi(t, Ri,..., Rn)-yR(t) is

surely true for 1 < i < fc, so

A' |= (Vi)Mt,Rx,..., Rn)->{Qi(t) V • • • V Qk(t)))

That is, nlx{u) ^ (Qi U ■ • • U Qk), where u is, as before, the representative instance constructed from the

relations of the database.

Containment in the opposite direction is obvious, since the TVs were constructed to mimic what the

chase does, and each Qi is the result of applying T,- to the relations of the database. Thus for all database

relations ri,...,r„ that satisfy A' (i.e., we can successfully chase the r,'s to construct a representative

instance u) we have that irlx(u) equals the union of the tableau mappings T\,..., Tk applied to ri,..., rn.

D

Query Optimization.

Our main interest in the computational approach to the universal relation model comes from a practical

consideration of computational efficiency; we do not want the expressions computing the [X]'a to be too

complicated. Thus, naturally, the issue of optimizing the expression to compute [X] is of paramount interest.

For example, Sagiv <Sal, Sa2> takes only minimal extension joins to produce the answers to queries, and

in limited cases, proves that these simple expressions suffice to compute pf]A.

An interesting consequence of Theorem 7 is that we can use the weak optimization technique of <ASU>

to optimize our expression. By that theorem, we have to deal only with unions of lossless tableau mappings.

Let T be such a tableau. We can view T as a tagged tableau that defines a mapping on relations over

Ri,...,Rn, as an untagged tableau that defines a mapping on universal relations, or as a dependency on

t and incidentally, a finite subset of A'.'

22

universal relations. Suppose that 2" is another tagged tableau, obtained by removing some of the rows of

T, that is weakly equivalent to T. That is, T1 is equivalent to T when T and T' are considered as untagged

tableaux. Clearly, T is contained in T' when they are considered as tagged tableaux; i.e., when applied to

relations over Rl,...,Rn,T' produces all tuples that T produces. Now, T is lossless with respect to the set

of dependencies A, so A \= T, when T is considered as a dependency, and consequently, A f= T', when T'

is considered as a dependency. Thus, T' as a tagged tableau produces only tuples that are produced by the

representative instance. As a consequence, T' can replace T in the union of tableau mappings..

Weakly optimized joins on maximal objects are used in System/U in order to compute connections

<U2>. The motivation there is given by appealing to the way dangling tuples are treated; this argument

is intuitively reasonable but without mathematical foundations.

Storage of Query Interpretation Information

Naturally, we do not wish to store, for the current database state d, all the views [X](d), where X ranges

over all sets of attributes. However, might it be feasible to store expressions for calculating [X](d) from d for

all X? The implication of our developments is that if any first-order way of computing connections exists,

then we can establish for each set of attributes X a finite set of tableaux whose mappings together produce

[X]. However, if there are, say, 100 attributes in the universal scheme, it does not seem realistic to store all

the expressions needed to reconstruct the [X]'s.

Existing universal relation systems have mechanisms for constructing the expressions for [X] "on the •

fly." For example, System/U <U2> stores only the maximal objects, and obtains [X] by reductions of the

expressions for the maximal objects.

It appears that we can take something like this approach in general. If connections are defined "by

the representative instance, then for any set of attributes X and attribute A not in X, [X] C 7TX([XA]).

Thus, [X] is at least the union of the projections of all [Xyl]'s. If [X] is exactly equal to the union of these

projections, then we need not store an expression for [X]. The only X's for which we need to store a formula

are those for which [X] is a proper superset of LU 7rx([Xyl]); these were called implicit objects in <Mal>,

because they generalized the idea of constructing maximal objects as in <MU>.

VI. Concluding Remarks

We have explored computational methods that might be used to simulate the effect of the representative

instance. Three overlapping classes of expressions were considered as possible computation methods:

1. monotone, . "

23

2. lossless, and

3. first-order.

We also identified a class of expressions that is in the intersection of all three of these classes: unions of

lossless tableau mappings.

We showed that monotonicity and losslessness are properties that we should expect of any computational

method that simulates the representative instance, for the simple reason that the representative instance has

these properties. If we want a first-order method, i.e., an expression of relational algebra, then we find, that

we need only consider finite unions of lossless tableau mappings, since all first-order methods are equivalent

to one of these. As a consequence, condition (3) above implies (1) and (2).

We would like to close by pointing out three shortcomings of the theory. First, though we have identified

the class of database schemes where the representative instance can be simulated by a first-order expression,

our characterization, the boundedness condition, is not effective; we do not know how to test whether a

schema is bounded or not.. In fact, we do not even know whether this problem is solvable at all, even in

simple cases where only functional dependencies are given.

Secondly, in showing that if there is any first-order expression then it must be a union of lossless tableau

mappings (Theorem 7), we used the compactness theorem. But in order to use compactness, we have to take

into account both finite and infinite databases. What happens if we restrict ourselves to finite databases?

Conceivably, there could be a first-order expression that is equivalent to an infinite union of lossless tableau

mappings, but is not equivalent to any finite union of such. In some limited cases, such as Example 6, we

can show that this is not the case by more involved arguments. But these arguments do not lead themselves

to generalization.

Third, there are reasons why the representative instance approach does not support all the semantics

that we might wish for in a universal relation system, and we doubt that it will serve as the "ultimate"

universal relation model. Some problems that we see as forcing awkwardness in the way universal relation

systems are used are the following.

1. A representative instance system answers queries by intersecting the weak instances, and then applying

the query (Theorem 1). However, if the weak instances are all the possible universal relations that the

user might see, it may make more sense to apply the query to all the weak instances, and then take the

intersection of the results. This approach cannot produce more than the method of query interpretation •

in which we compute the representative instance first, but there are examples where it produces less,

notably when a join on "not equal" is involved in the query.

2. The representative instance allows us to infer equalities among nulls, but, since nulls are projected out

24

before we compute the answer to the query, these equalities cannot influence the answer. For example,

we might deduce that employees Smith and Jones have the same manager because they are in the same

department, yet not know their manager, because the information is not in the database. In answer to

the query "list pairs of employees with the same manager," we would not list the pair (Smith, Jones).

3. The representative instance approach supports only qne notion of nulls, generally referred to as "missing

value nulls." We might wish to restrict the ability assumed in the representative instance approach

to extend any tuple in any relation of' the database to the universal set of attributes. Perhaps it is

better to extend tuples only in limited ways, leaving certain positions in tuples "blank" and allowing

no dependency applications at all involving blanks. The effect of this restriction is that the universal

relation is split into several relations with overlapping, but distinct sets of attributes.

We hope to discuss these issues and propose an "improved" representative instance that supports many

of the concepts developed here in a forthcoming paper <MUV>.

References

[Ah] Aho, A. V., private communication.

[ABU] Aho, A. V., C. Beeri, and J. Ü. Ullman, "The theory of joins in relational databases," ACM Trans-
actions on Database Systems 4:3 (1979), pp. 297-314.

[Ar] Arazi-Gonczarowski, Z., "A high-level interface for naive users in a relational database," Dept. of
C. S., Hebrew Univ., Jerusalem, 1981.

[AP] Atzeni, P. and D. S. Parker, "Assumptions in relational database theory," Proc. ACM Symposium
on Principles of Database Systems, pp. 1-9, 1982. _

[ASU] Aho, A. V., Y. Sagiv, and J. D. Ullman, "Equivalence of relational expressions," SLAM J. Computing
8:2 (1979), pp. 218-246. See also "Efficient optimization of a class of relational expressions," ACM
Transactions on Database Systems 4:4 (1979), pp. 435-454.

[BBG] Beeri, C, P. A. Bernstein, and N. Goodman, "A sophisticates introduction to database normaliza-
tion theory," Proc. International Conference on Very Large Data Bases, pp. 113-124, 1978.

[BR] Beeri, C. and J. Rissanen, "Faithful representation of relational database schemes," IBM research
report, San Jose, CA, 1980.

[BV] Beeri, C. and M. Y. Vardi, "Formal systems for tuple and equality generating dependencies,"
unpublished memorandum, Hebrew University, 1981. To appear in SLAM J. Computing.

[B] Bernstein, P. A., "Synthesizing third normal form relations from functional dependencies," ACM
Transactions on Database Systems 1:4 (1976), pp. 277-298.

[Cl] Codd, E. F., "A relational model for large shared data banks," Comm. ACM 13:6 (1970), pp.
377-387.

[C2] Codd, E. F., "Relational databases: a practical foundation for productivity," Comm. ACM 25:2
(1982), pp. 109-117.

[C*] Codd, E. F., R. S. Arnold, J. M. Cadiou, C. L. Chang, and N. Roussopoulos, "Rendezvous version I:
an experimental English language query formulation system for casual users of relational databases,"
RJ2144, IBM, San Jose.CA, 1978.

25

[F] Fagin, R., "Horn clauses and database dependencies," Proc. Twelfth Annual ACM Symposium on
the Theory of Computing, pp. 123-134, 1980. To appear in J. ACM.

[FMU] Fagin, R., A. 0. Mendelzon, and J. D. Ullman, "A simplified universal relation assumption and its
properties," ACM Transactions on Database Systems 7:3 (1982), pp. 343-360.

[GaMi] Gallaire, II. and J. Minker (eds.), Logic and Data Bases, Plenum Press, New York, 1978.

[GrMe] Graham, M. and A. 0. Mendelzon, "Notions of dependency satisfaction," Proc. ACM Symposium
on Principles of Database Systems, pp. 177-188, 1982.

[GV] Graham, M. and M. Y. Vardi, "On the axiomatizability of consistent database states," manuscript
in preparation.

[H] Honeyman, P., "Testing satisfaction of functional dependencies," to appear in J. ACM.

[HLY] Honeyman, P., R. E. Ladner, and M. Yannakakis, "Testing the universal instance assumption," Inf.
Proc. Letters, 10:1 (1980), pp. 14-19.

[Ke] Kent, W., "Consequences of assuming a universal relation," ACM Transactions on Database Sys-
tems 6:4 (1981), pp. 539-556.

[Ko] Kowalski, R., "Logic as a database language," Dept. of Computing, Imperial College, London, 1981.

[KS] Kuck, S. M. and Y. Sagiv, "A universal relation database system implemented via the network
model," Proc. ACM Symposium on Principles of Database Systems, pp. 147-157, 1982.

[L] Lozinski, E. L., "Construction of relations in relational databases," ACM Transactions on Database
Systems 5:2 (1980), pp. 208-224.

[Mai] Maier, D., The Theory of Relational Databases, Computer Science Press, Rockville, Md., 1983.

[Ma2] Maier, D., "Discarding the universal instance assumption," Proc. XP/1 Workshop, Stony Brook,
N. Y., June, 1980.

[MMSU] Maier, D., A. 0. Mendelzon, F. Sadri, and J. D. Ullman, "Adequacy of decompositions in relational
databases," J. Computer and System Sciences 21:3 (1980), pp. 368-380.

[MMS] Maier, D., A. 0. Mendelzon, and Y. Sagiv, "Testing implications of data dependencies," ACM
Transactions on Database Systems 4:4 (1979), pp. 455-469.

[M*] Maier, D., D. Rozenshtein, S. Salveter, J. Stein, and D. S. Warren, "Toward logical data inde-
pendence: a relational query language without relations," ACM SIGMOD International Symposium
on Management of Data, pp. 51-60, 1982.

[MU] Maier, P. and J. D. Ullman, "Maximal objects and the semantics of universal relation databases,"
to appear in TODS.

fMUV] Maier, D., J. D. Ullman, and M. Y. Vardi, "Beyond representative instances," manuscript in
preparation, Stanford Univ., Stanford, CA.

[MW] Maier, D. and D. S. Warren, "Specifying connections for a universal relation scheme database,"
ACM SIGMOD International Symposium on Management of Data, pp. 1-7, 1982.

[Me] Mendelzon, A. 0., "Database states and their tableaux," Proc. XP2 Workshop, State College, Pa.,
June, 1981.

[0] Osborn, S. L., "Towards a universal relation interface," Proc. International Conference on Very
Large Data Bases, pp. 52-60, 1979.

[Re] Reiter, R., "Towards a logical reconstruction of relational database theory," Dept. of C. S-, Univ.
of British Columbia, i981.

[Ri] Rissanen, J., "Independent components of relations," ACM Transactions on Database Systems 2:4
(1977), pp. 317-325.

26

[SU] Sadri, F. and J. D. Ullman, "Template dependencies: a large class of dependencies in relational
databases and its complete axiomatization" J. ACM 29:2 (1982), pp. 363-372.

[Sal] Sagiv, Y., "Can we use the universal instance assumption without using nulls?," ACM SIGMOD
International Symposium on Management of Data, pp. 108-120, 1981.

[Sa2] Sagiv, Y., "A characterization of globally consistent databases and their correct access paths,"
unpublished memorandum, Univ. of Illinois, Dept. of C. S., 1981.

[Ul] Ullman, J. D., Principles of Database Systems, Computer Science Press, Potomac, Md., 1983.

[U2] Ullman, J. D., "The U. R. strikes back," Proc. ACM Symposium on Principles of Database Systems,
pp. 10-22, 1982.

[VI] Vardi, M. Y., "On decomposition of relational databases," to appear in IEEE Twenty-Third Annual
Symp. on Foundations of Computer Science, Nov., 1982.

[V2] Vardi, M. Y., "Axiomatization of functional and join dependencies in the relational model," M. Sc.
Thesis, Dept. of Applied Math., Weizmann Inst. of Science, Rehovot, 1980.

[Y] Yannakakis, M., "Algorithms for acyclic database schemes," Proc. International Conference on Very
Large Data Bases, pp. 82-94, 1981.

[YP] Yannakakis, M. and C. H. Papadimitriou, "Algebraic dependencies," Proc. Twenty-First Annual
IEEE Symposium on Foundations of Computer Science, pp. 328-332, 1980. To appear in J.
Computer and System Sciences.

27

